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ABSTRACT: There is a significant demand for multiplexed
fluorescence sensing and detection across a range of applications.
Yet, the development of portable and compact multiplexable
systems remains a substantial challenge. This difficulty largely
stems from the inherent need for spectrum separation, which
typically requires sophisticated and expensive optical components.
Here, we demonstrate a compact, lens-free, and cost-effective
fluorescence sensing setup that incorporates machine learning for
scalable multiplexed fluorescence detection. This method utilizes
low-cost optical components and a pretrained machine learning
(ML) model to enable multiplexed fluorescence sensing without
optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without
altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal
Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The
effectiveness of this approach highlights the system’s potential for point-of-care applications that require cost-effective and scalable
solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for
widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
KEYWORDS: multiplexed fluorescence sensing, machine learning, neural network, LAMP, point-of-care, lens-free

Fluorescence detection serves as a crucial readout method in
a wide array of biochemical assays, including quantitative

Polymerase Chain Reaction,1 Enzyme-Linked Immunosorbent
Assay,2 and various microscopy and imaging techniques.3,4 This
prominence is attributed to the simplicity of visualizing targets
once they are labeled with fluorescent tags or dyed. Traditional
commercial instruments, characterized by their bulkiness and
high cost, rely on interchangeable optical components like
filters, dichroic mirrors, and lenses, rendering them impractical
for portable applications. Nevertheless, such complex systems
are not always necessary for conducting bulk fluorescence
measurement assays, and more straightforward yet reliable
solutions are being developed for portable use.

Point-of-care testing (POCT) represents a versatile approach
to diagnostics, capable of being conducted in diverse environ-
ments such as field locations, homes, ambulances, and hospitals.
POCT circumvents the constraints of conventional laboratory
settings by eliminating the need for specialized personnel and
enabling the rapid delivery of results, making it particularly
valuable for diagnostic applications.5,6 The advantages of POCT
have spurred the development of platforms designed for real-
time, quantitative, and sensitive testing, and fluorescence
(optical) detection emerges as a preferred detection strategy,
rivaled by other technologies like electrochemical, surface
plasmon resonance (SPR), and surface-enhanced Raman
scattering (SERS).7 This preference underscores the need for

further innovation in miniaturized fluorescence measurement
devices, fostering advancements that could revolutionize point-
of-care diagnostics.8

Concurrently, there has been a focus on developing
multiplexed diagnostics in point-of-care settings to conduct
comprehensive analyses with minimal sample volume, aiming to
reduce cost and time significantly, enhance decision-making
accuracy and speed, improve patient outcomes, and streamline
lab workflows.9,10 Multiplexed testing is essential as it allows for
the identification of multiple pathogens or disease indicators
from a single sample and is being used in various areas. For
example, the detection of renal biomarkers to indicate acute
kidney damage,11 cardiac biomarkers to identify patients with
developing cardiovascular diseases,12 cancer biomarkers for
monitoring purposes,13 and infectious disease diagnostics,
wherein this capability is crucial for differentiating between
diseases with similar symptoms,14 confirming specific infec-
tions,15 or identifying variants for epidemiological surveil-

Received: April 14, 2024
Revised: July 3, 2024
Accepted: July 5, 2024
Published: July 16, 2024

Articlepubs.acs.org/acssensors

© 2024 American Chemical Society
4017

https://doi.org/10.1021/acssensors.4c00860
ACS Sens. 2024, 9, 4017−4027

D
ow

nl
oa

de
d 

vi
a 

PE
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Se

pt
em

be
r 

9,
 2

02
4 

at
 1

4:
25

:2
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aneesh+Kshirsagar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anthony+J.+Politza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weihua+Guan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssensors.4c00860&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00860?ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00860?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00860?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00860?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00860?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/ascefj/9/8?ref=pdf
https://pubs.acs.org/toc/ascefj/9/8?ref=pdf
https://pubs.acs.org/toc/ascefj/9/8?ref=pdf
https://pubs.acs.org/toc/ascefj/9/8?ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssensors.4c00860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/acssensors?ref=pdf
https://pubs.acs.org/acssensors?ref=pdf


lance.16 Given the effectiveness and simplicity of fluorescence-
based readouts, there’s a pressing need to advance multiplexed
fluorescence sensing capabilities for efficient multiplexed
diagnostics.

One prevalent strategy for sample-to-answer multiplexed
POCT for nucleic acid detection is to spatially parallelize the
reactions and detect multiple targets separately.17−23 However,
multiplexing via parallel reactions has multiple disadvantages
due to splitting a small sample volume into multiple channels or
reaction zones, such as variability in analyte concentration,
reduction in analyte concentration below detectable limits, and
increased instrumentation complexity. The other strategy is to
develop reporters specific to the analytes under consideration
instead of universal dyes such that multiplexed detection can be
enabled in one-pot or one reaction. Such one-pot detection can
be facilitated using various readout methods, such as a
smartphone,24−27 which has uniformity issues when the phone
is changed, discrete Complementary Metal-Oxide-Semiconduc-
tor (CMOS) or Charge-Coupled Device (CCD) based
detectors along with LED or Laser for excitation,28−30 which
is emerging as the preferred methodology. However, the
pending challenge for highly multiplexed fluorophore detection
in one pot is the overlap of the respective emission spectra. This
issue typically necessitates using filters, collimating lenses, or
dichroic mirrors in the optical paths, increasing the complexity
and restricting the combinability of fluorophores. It may also
demand hardware reconfiguration if deviating from a particular
combination. Consequently, there is a critical need for an easily
assembled, simple-to-adjust or universally applicable, highly
multiplexable, and sensitive fluorescence detection setup for
point-of-care devices.

Recent advancements in machine learning (ML) and artificial
intelligence (AI) have substantially improved biochemical
sensing technologies, especially in the detection of multiplexed
biomarkers through medical imaging and fluorescence anal-
ysis.31 For instance, digital immunoassays now utilize computer
vision-based AI to decode complex signals from microspheres,
varying in color, size, and number, facilitating precise and
straightforward multiplexed detection. Additionally, a deep
learning-assisted programmable chip has been developed for
colorimetric sweat biomarker detection. This chip uses enzyme/
indicator-immobilized capsules to accurately quantify sub-
stances like glucose and lactate.32 Furthermore, gold nano-
particles exhibit distinct aggregation behaviors in response to
various buffering conditions, which can be analyzed through ML
to accurately classify and quantify neurotransmitters.33 These
developments underscore the transformative impact of AI and
ML in refining diagnostic methodologies and improving clinical
outcomes.

In this study, we developed a highly compact, lens-free,
affordable fluorescence sensing setup that enables scalable
multiplexity through ML methods. With a fixed set of hardware,
the setup can analyze a mixture of fluorophores with the
pretrained model, significantly reducing the complexity of
traditional multiplexed fluorescence sensing, which often
requires reconfiguration of the optical components. We first
formulated the problem of multiplexed fluorophore detection,
introduced and modeled our sensing approach, and studied the
ability of this setup to detect multiplexed fluorophores by
establishing the single optimized detection channel for each
fluorophore based on the theoretical spectra. Further, we
evaluated three distinct machine learning algorithms that
leverage calibration data acquired over multiple channels to

Figure 1. An overview of the optical assembly and procedure for multiplexed fluorescence detection. (a) 3D render of the optical assembly developed
for multiplexed fluorescence detection. It consists of an RGB LED with red, green, and blue lights as the excitation source and a multichannel spectral
sensor for detecting the collective emission, arranged perpendicular to each other to reduce excitation light leaked into the sensor. A highlight of this
setup is that it forgoes a lens, which may require precise alignment and positioning to ensure emissions are focused on the sensor, hence permitting
some room for alignment errors. (b) A simplified electronic block diagram of the setup shows all the components. A Raspberry Pi Zero microprocessor
controls thermal and optical submodules and records the data. (c) Schematic representation of the fluorescence generation from a mixture of n
fluorophores (denoted by F1, F2, F3, ..., Fn) and its detection. The mixture is depicted using colored dots, where each color represents a different
fluorophore. Here, n = 4 results in four columns, with the number of rows in each column reflecting the concentration of the corresponding
fluorophore. The process involves exciting the mixture by alternating between the three sources in a time-divided manner and capturing the
combinatorial emitted fluorescence for each excitation by the sensor across eight wavelength channels, facilitated by high-precision monolithic filters
on top of an array of photodiodes and later converted to digital values.
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accurately predict the concentrations of these multiplexed
fluorophores without considering the spectral information and
demonstrated enhanced performance and scalability. Conclu-
sively, we applied our optical assembly and ML algorithm in the
specific and real-time monitoring of three targets within a
multiplexed, isothermal nucleic acid amplification assay,
showcasing the practical application of our developments in a
complex biological context.

■ PROBLEMFORMULATION, EXPERIMENTAL SETUP,
AND MODELING

To create a device capable of compact, affordable fluorescence
detection with scalable multiplexity using fixed universal hardware
while addressing critical challenges, including the overlap of
fluorophores’ emission spectra, excitation light spillover into the
detection sensors, and spatial signal loss from bypassing a collimating
lens, we set out to first formulate and model an innovative fluorescence
sensing approach. The task of multiplexed fluorescence detection
involves analyzing a mixture with n distinct fluorophores (F1, F2, F3, . . .,
Fn) at unknown concentrations (C1, C2, C3, . . ., Cn), with the aim to
determine each fluorophore’s concentration.

Our strategy involves exciting the fluorophore mixture using three
sources and recording the emissions by multiple wavelength channels of
a spectral sensor. This is an improvement over our previous approaches,
which consisted of a single blue excitation source along with a three-
channel color sensor, designed for sensing a single fluorescence.34−36 In
the development of our setup, significant emphasis was placed on
achieving a lens-free design. Traditional fluorescence detection systems
often employ collimating lenses to focus or direct light, enhancing the
detection capabilities, especially at lower concentrations. These lenses
are critical for minimizing signal loss and improving the signal-to-noise
ratio. However, lenses add complexity, cost, and mechanical alignment
requirements to the device assembly. Our design omits the lens,
simplifying the construction and significantly reducing the need for
precise optical alignment. This simplification is particularly advanta-
geous in resource-limited settings.

Figure 1a provides a detailed view of the optical setup developed to
analyze an unknown mixture of multiple fluorophores that comprises an
RGB LED (SK6812) as the triwavelength excitation source and a
CMOS spectral sensor (AS7341) as the emission detector, mounted
perpendicular to each other. The LED consists of three separate sources
and the required driver circuit in a package. It can be controlled by a
microprocessor such as a Raspberry Pi via nonreturn to zero (NRZ)
communication protocol. The sensor has an adjustable integration time
and detects incident light using eight optical channels in the visible
spectral range. It communicates with a microprocessor via interinte-
grated circuit (I2C) communication protocol. An overview of the
electronic system is given in Figure 1b. This spectral measurement is
feasible due to the integration of high-precision monolithic filters onto
standard CMOS silicon via nano-optic deposited interference filter
technology. The sensor has a photodiode array behind the monolithic
filters, and the raw measurements are fed to a 16-bit six-channel analog-
to-digital converter (ADC) via a multiplexer to provide digital relative
fluorescence units (RFUs). Although our system is not entirely filter-
free, the integrated filters furnish it with the ingenuity to detect
fluorescent emissions across various wavelength ranges without the
need for any hardware reconfiguration, unlike devices that use separate
glass or acrylic filters. Figure 1c illustrates this backend operation of the
spectral sensor along with the schematic representation of using the
three sources within the triwavelength LED one by one in a time-
divided manner to probe the fluorophore mixture and record the
resulting collective emission across eight different channels of the
sensor. As a result, this setup may be used to measure the emissions of
different fluorophores and corresponding LED excitations simulta-
neously without the need for any additional lenses, filters, or dichroic
beam splitters that not only complicate the assembly by requiring
precise alignment of components but also limit the number of
fluorophores that can be detected without hardware reconfiguration.

To better understand the complex relationship between the
concentration of each fluorophore in each mixture and the emission
measured by each detection channel for each excitation source, we set
up a mathematical model.37 Consider there are m excitation sources (I1
to Im), n fluorophores with their respective concentrations in the
mixture and d detection channels of the sensor, then for each excitation
i, we can try to write the interaction of the excitation source Ii,
fluorophore emission coefficients [Ei], fluorophore concentrations [C],
and coupling of the n fluorophores’ emissions (due to an excitation) to
the detection channels [βi] as below.

First, we determine the contribution of each fluorophore to the
emission under excitation i, weighted by its concentration

EM EM EM EM E E E E C C C Cn n1 2 3 n 1 2 3 1 2 3[ ··· ] = [ ··· ] [ ··· ]
(1)

or

EM E Ci nX i nX nX1 1 1[ ] = [ ] [ ] (2)

where ⊙ represents element-wise matrix multiplication. Thus, [EMi]
represents the emission response of each fluorophore to the ith
excitation, weighted by its concentration.

Next, we distribute these emission responses to the d detection
channels, considering the coupling factors in [βi]
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which is equal to the detected signals, as shown below

S S S Si dX d1 1 2[ ] = [ ··· ] (4)

The time-varying Sd can be written as follows, which we have
previously reported34

S t
I

h
C t N IT( ) ( )d

i n d
F Bi B

,= [ [ ] + ] ×
(5)

where hν is the emitted photon’s energy, α is the absorption coefficient,
C is the fluorophore concentration, ϕF is the fluorescence quantum
yield,NBi is the background signal, ϕB is the background signal quantum
yield, and IT is the sensor’s integration time.

To summarize, for each excitation i ranging between 1 to m, we can
write m different equations with the following form,

E C S. ( )i
T

i i[ ] [ ] [ ] = [ ] (6)

and all the detected values can be arranged in another matrix as
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Thus, we have established a relationship between the detected values
and corresponding fluorophore concentrations, which will be used in
non-ML and ML-based analyses.

■ RESULTS AND DISCUSSION
Traditional Analytical Method. To explore the use of a

conventional approach along the lines of previously reported
instruments,34,35,38,39 where a single excitation and detection
channel of a sensor is used for a single fluorophore, we utilized
the experimental setup described earlier. This setup detects
multiple fluorophores in a mixture by choosing the optimal
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excitation and detection channel combination per fluorophore
based on the information about each fluorophore’s excitation
and emission spectra. Figure 2a shows the excitation and
emission spectra of the three chosen fluorophores (FAM,
ATTO550, and Cy5), along with the spectra of the excitation
sources chosen for each fluorophore and their alignment with
the discrete detection channels of the sensor. We can see that the
blue, green, and red excitations align with FAM, ATTO550, and
Cy5 excitation spectra, respectively, and we use each source one
by one to excite the corresponding fluorophore that constitutes
the mixture.

However, before testing a fluorophore mixture, we first need
to determine which of the spectral sensor’s detection channels is
best for detecting each fluorophore under consideration. The
alignment of the sensor’s discrete detection channels with the
spectral signatures of the fluorophores indicates that the highest
readings captured for specific channels may stem from leakage of
the LED source’s incident light; this effect must be mitigated to
determine the optimal detection channel for each fluorophore
accurately. For this, we tested dilutions of each fluorophore
individually, and the response for each detection channel is given
in Supplementary Figure S1. Briefly, the plots correlating
adjusted sensor responses with concentrations for FAM,
ATTO550, and Cy5, when excited by blue, green, and red
light, respectively, show that the channels 4, 6, and 8 centered at
510, 583, and 670 nm respectively exhibit optimal responsive-
ness for each dye.

After identifying the optimal detection channels for each
fluorophore, we examined how one fluorophore’s presence
affects the others’ detectability in a mixed fluorophore scenario.
To test this, we prepared a sample space comprising four
concentrations (0.00, 0.25, 0.50, and 1.00 μM) of each
fluorophore, resulting in 64 unique combinations. These
combinations and the normalized RFUs for each fluorophore’s
previously selected optimum channels are depicted in Figure 2b.
While there is an observable upward trend in the RFUs with
rising fluorophore concentrations, for a precise linear fit, we
independently plot the RFUs against the concentration for each

fluorophore, disregarding the concentrations of the other two in
the mixture to present the data in a clear, two-dimensional
format. Figure 2c shows only moderate linearity for FAM and
ATTO550, suggesting that this detection scheme may not be
sufficient for accurate measurements of these fluorophores in the
submicromolar range. However, the strong linearity between
RFU and Cy5 concentration may be attributed to either the
better alignment of Cy5′s peak excitation spectra with the source
or the clearer separation of Cy5′s emission spectra from those of
FAM and ATTO550. The higher overlap of FAM and
ATTO550 spectra could complicate their distinct resolution,
making it challenging to attribute Cy5′s better linearity to one
specific cause definitively.
Machine Learning-Based Methods. To leverage the full

potential of the spectral sensor, we utilized its ability to capture
emissions across multiple detection channels for the three
excitation sources and simultaneously employed all the data
instead of relying on optimized sources and detection channels
for a particular fluorophore. By utilizing ML, we identified
patterns within the data, as multiple studies have demonstrated
ML’s effectiveness in demixing combinatorial emissions in
biological fluorescence detection and imaging.40−42 Figure 3a
depicts the implementation process of a supervised ML model
initiated by collecting calibration data from 125 fluorophore
mixtures. These mixtures were prepared at five specific
concentrations (0.00, 0.25, 0.50, 0.75, and 1.00 μM) of FAM,
ATTO550, and Cy5. For accuracy, each mixture was subjected
to seven measurements under three different excitation sources,
blue, green, and red, with each measurement capturing data
across all eight detection channels, generating 24 RFU values.
These values were then used as input features for the ML model,
designed to predict the concentrations of the three distinct
fluorophores concurrently. We allocated 80% of the data for
training each model, while the remaining 20% was used for
model validation and testing. We evaluated three types of
models, multivariate linear regression (MLR), support vector
regression (SVR), and a multilayer perceptron neural network

Figure 2.A traditional analytical method that uses a single source and a single detection channel per constituent fluorophore is insufficient for accurate
detection. (a) Displayed are the theoretical excitation and emission spectra of the three chosen fluorophores, FAM, ATTO550, and Cy5, along with the
spectra of RGB excitation sources and the sensor’s eight detection channels. Blue, green, and red excitations have optimum alignment with the
excitation spectra of FAM, ATTO550, and Cy5, respectively, while detection channels 4, 6, and 8 align best with their emission spectra. (b) 3D scatter
plot representing the normalized sensor RFU responses to varying fluorophore concentrations in a mixture. Using the optimal excitation sources and
detection channels from part a, 64 unique combinations prepared by mixing FAM, ATTO550, and Cy5 at four concentrations (0.00, 0.25, 0.50, and
1.00 μM) each were tested. This visualization shows the increasing RFU trend correlating with rising concentrations of each fluorophore, irrespective
of the concentrations of the other two. (c) 2D scatter plot shows the same experimental data as in part b, mapping normalized RFUs against individual
fluorophore concentrations, disregarding the concentrations of the other fluorophores in the mixture. The independent linear fits for FAM (R2 = 0.34)
and ATTO550 (R2 = 0.55) indicate moderate linearity, suggesting difficulty in precise measurement at submicromolar concentrations. In contrast, Cy5
exhibits strong linearity (R2 = 0.92), and could be due to either the better alignment of its peak excitation with the chosen source or clearer separation of
its emission spectra from those of FAM and ATTO550.
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(NN), to determine the most effective method for accurate
prediction.
Multivariate Linear Regression. To explore how each

fluorophore concentration influences the emission values and
ultimately predict these concentrations, we utilized the multi-
variate linear regression (MLR) model, as it is a foundational
regression technique. Within MLR, we applied linear algebra
principles to calculate the weights and biases associated with
each of the 24 RFU values serving as inputs. Inspired by the
previously proposed model, eq 8 illustrates the MLR model
tailored for predicting the concentration of the FAM
fluorophore, utilizing 24 RFU values as inputs when there are
i excitations and d detection channels. In this equation, each w
coefficient signifies the weight assigned to the regression
parameters corresponding to each RFU input, while ε denotes
the error or bias inherent in the model.

C w w RFU w RFU

w RFU

FAM i d i d i d i d

i d i d FAM

0 1, 1 1, 1 1, 2 1, 2

3, 8 3, 8

[ ] = + + +

··· + +
= = = = = = = =

= = = = (8)

Similarly, two more equations can be written for ATTO550

and Cy5 to get
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Figure 3. Comparative analysis of machine learning models for multiplexed fluorescence concentration predictions favors a Neural Network. (a)
Tabular presentation of fluorophore mixture compositions (top), with a sample space of N = 125 mixtures using five concentrations (0.00, 0.25, 0.50,
0.75, and 1.00 μM) of each fluorophore. These samples were probed by the developed optical setup, generating 24 features�eight detection channels’
values for three excitations (bottom). Each of the 125 samples was measured seven times to generate 875 data frames, and 20% of this data set is
reserved for testing and validation. (b) Performance evaluation of Multivariate Linear Regression (MLR) for predicting concentrations. Left: MLR
architecture; center: predicted versus expected fluorophore concentrations with linear fits having R2 value of 0.97 for FAM, ATTO550, and Cy5; right:
concentration-specific mean absolute errors (MAE) for all fluorophores, which reveal higher inaccuracies at the extremities of the concentration range
(0 and 1 μM). (c) Support Vector Regression (SVR), with the model architecture (left), yields improved linear fits (center) with R2 values of 0.99, 0.95,
and 0.98 for each fluorophore and reduced MAEs (right). Despite the improvement over MLR, the nonrandom and biased accuracy points to the
potential for developing a better model. (d) Neural Network (NN), with the model architecture illustrated (left), demonstrates the best predictive
linearity (center) with R2 value of 0.99 for each fluorophore and presents the lowest MAEs (right), indicating its superior ability to handle
nonlinearities without biased predictive accuracy.
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For clarity and efficiency, tackling a multivariate regression
challenge involves decomposing it into several single-variable
linear regression models. In this approach, we created three
distinct models, each dedicated to one of the three fluorophores,
with the predictive outcomes showcased in Figure 3b. The linear
correlations between predicted and actual fluorophore concen-
trations demonstrate a good linear relationship and proficient
predictive capabilities for static concentrations. Additionally,
residual analysis for each fluorophore, detailed in Supplementary
Figure S2, reveals a normal distribution of residuals, affirming
our model’s assumption of homoscedasticity - constant variance
around a zero mean. Despite these promising indicators, the
concentration-specific mean absolute errors (MAE) unveil
pronounced inaccuracies at the lowest and highest concen-
tration levels (0 and 1 μM). This observation indicates the
model’s difficulty in effectively handling the entire concentration
range, potentially due to nonlinearities like overlapping emission
spectra and secondary excitations. Thus, we were motivated to
explore more advanced machine learning models capable of
addressing nonlinear relationships to improve predictive
accuracy across all concentrations.
Support Vector Regression. Support vector machines

(SVM) perform the nonlinear mapping of input vectors into a
high-dimensional feature space and use a linear decision surface
within this feature space primarily for binary classification.43,44

Given the potential nonlinearities mentioned in the previous
section, SVM could perhaps be a better candidate for predicting
the fluorophore concentrations in a mixture. Here, a hyperplane
within the feature space acts as the optimal boundary, set by an
error margin, with support vectors crucial for its positioning
based on data outliers. Support Vector Regression (SVR),
utilizing kernel functions like the radial basis function (RBF),
adapts the basic framework of SVM for regression problems and
handles nonlinear data by striving for the best fit within a specific
error threshold rather than minimizing prediction errors
directly.

Considering SVR’s limitation with multiple outputs, we
crafted three distinct SVR models with the RBF kernel to
estimate the concentrations of three fluorophores, presenting
these findings in Figure 3c. Comparing the linear correlations
between predicted and actual concentrations of FAM,
ATTO550, and Cy5, we observed a marked advancement over
MLR, as also evidenced by the substantially decreased MAEs.
Further, despite changing the kernel function to linear and
sigmoid, RBF, along with hyperparameter tuning such as the
penalty parameter (C), the kernel coefficient (γ), and epsilon in
the loss function (ϵ), performed the best. Yet the nonrandom
and biased accuracy hints at the potential for the exploration of
additional ML models capable of handling a higher degree of
nonlinearity.
Neural Network. Neural networks (NN) process input data

across multiple layers, where each neuron performs a weighted
sum of its inputs, followed by a nonlinear activation function,
enabling the network to capture intricate data patterns.45 Here,
we use a multilayer perceptron (MLP), a feedforward artificial
neural network (ANN) implementing supervised learning, and
the output layer generates predictions that are evaluated against
true values to determine errors. These errors are then
propagated backward to adjust neuron weights during the
training phase. Given their layered architecture and nonlinear
activation functions, we expect NN to outperform SVR in this
application by more effectively modeling complex, nonlinear,
and hierarchical relationships within the data. Figure 3d

illustrates the NN’s predictions for FAM, ATTO550, and Cy5
fluorophores, showing a notable enhancement in the correlation
between predicted and actual concentrations compared to SVR.
Furthermore, the MAE for each concentration level is marginally
lower than that observed with SVR, without indicating any
biased accuracy.
Performance Comparison between Non-ML and ML

Methods. To explain why the ML methods perform much
better than an optimized channel’s readings, we consider eq 6,
which gives us an empirical relation assuming a linear
superposition of emissions and detection responses. However,
measuring the exact emission response of each fluorophore to
each excitation and the distribution of the emission responses
over the detection channels is challenging, and valuable emission
information may be lost by choosing a single detection channel.
In addition, the nonlinear effects, such as overlapping emission
spectra and leakage of excitations due to the exclusion of filters,
cannot be effectively measured or defined. This makes the
accurate development of a model challenging while considering
all these intricacies, and it may explain the inadequacy of using a
single excitation source and an optimum detection channel for
sensing fluorophores present in a mixture.

The underlying principle of the supervised machine learning
approach involves forming a data set with various combinations
of constituent fluorophores at specific concentrations, and
recording the resultant fluorescent emissions across eight
channels. Each channel is responsive to specific wavelength
ranges, corresponding to three separate excitation lights. This
data helps to train a model that establishes a complex
relationship between the concentrations of multiple fluoro-
phores and the fluorescence readings measured by the sensor.
This model can then predict the concentrations of fluorophores
in an unknown sample based on these readings. The model
incorporates crucial data about the predominant influence of
certain fluorophores over specific detection channels and uses
this information to predict concentrations from a set of
measured readings. It also models the concentration-specific
cross-influence within the prediction algorithm. Due to the
extensive training data set featuring unique combinations, the
model predicts concentrations for combinations of fluoro-
phores, rather than individual ones. When used in conjunction
with specific probe-based biochemical reactions, where the
concentration of a targeted fluorophore increases (if the target is
present) while other fluorophores remain stable, this approach
effectively prevents signal cross-influence.
Performance Comparison amongMLMethods.To find

the most accurate ML model, we compare the performance of
the three models among each other and with the optimized
channel method through metrics such as the R2, mean absolute
error (MAE), limit of detection (LoD), and limit of
quantification (LoQ) values in Table 1. Please refer to Materials
and Methods for details regarding the calculation of LoD and
LoQ. The NN model surpasses others in predictive accuracy,
making it the preferred choice for further exploration in real-
world applications, such as nucleic acid amplification assays. It
should be noted that the observed improvements in the LoD and
LoQ are primarily due to the NN’s enhanced ability to model the
complex interactions among fluorophores, which are expected
to be predominantly nonlinear.

To establish the relevance of the error values, we consider the
maximum fluorophore concentration used in our experiments to
construct the training and test data set: 1 μM. This value is used
to convert the MAEs to percentage errors in Table 1. To
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understand how this percentage MAE affects the prediction of
the final target concentration, we would need to empirically
determine two relationships: (i) between fluorophore concen-
tration and time to positive (TTP), and (ii) the standard curve
equation for target concentration in a biochemical reaction.
Therefore, we report the MAE in terms of percentage. Please
note that the observed improvements in MAE, LoD, and LoQ
do not directly imply an enhancement in the spectral sensor’s
intrinsic electronic sensitivity to weaker signals. Additionally, the
LoD of a fluorophore could vary under different background
concentrations of the other two fluorophores. However, a
comprehensive evaluation in a three-dimensional space
involving all possible fluorophore combinations would lead to

a prohibitively high number of experimental conditions, making
practical validation infeasible. Hence, in Supplementary Table
S1, we present a comparison of the best-case (where the
concentration of the other two fluorophores is the lowest, i.e., 0
μM) and worst-case (where the concentration of the other two
fluorophores is the highest, i.e., 1 μM) scenarios. The results do
not demonstrate a significant worsening of the MAE, LoD, and
LoQ values as the background concentrations of the
fluorophores increase.
Scalable Multiplexity Enabled by ML. To illustrate the

setup’s scalability for varying number of fluorophores in the
mixture, we assessed its performance in predicting concen-
trations of two, three, or four fluorophores. We used four
different concentrations (0.00, 0.25, 0.50, 1.00 μM) of each
fluorophore, resulting in 16 combinations for ATTO425 and
FAM, 64 combinations for ATTO425, FAM and ATTO550,
256 combinations for ATTO425, FAM, ATTO550, and Cy5. As
before, each mixture underwent seven measurements at blue,
green, and red excitations while detections were recorded across
eight detection channels to generate 24 RFU values, which
served as inputs for the NN model tasked with predicting the
concentrations of the constituent fluorophores, using 80% of the
data for training and 20% for validation and testing. The results,
illustrated in Figures 4a, 4b, and 4c for two, three, and four
fluorophores, respectively, show the predicted versus actual
concentrations for each fluorophore along with the MAEs. The
marginal improvement in prediction linearity and concen-
tration-specific MAEs is likely due to the increased training and
test samples as the number of fluorophores increases. No
significant trends across concentrations within each model
indicate uniform predictive reliability. This demonstrates the
scalability of our setup to accommodate mixtures with varying

Table 1. Performance Comparison of Fluorescence
Detection Methods

Fluorophore R2 % MAE LoD (μM) LoQ (μM)

Optimized Source and Channel Response Method
FAM 0.35 NA 1.60 5.26
ATTO550 0.56 NA 1.07 3.52
Cy5 0.93 NA 0.18 0.58

Multivariate Linear Regression
FAM 0.97 4.33 0.15 0.48
ATTO550 0.97 3.98 0.16 0.54
Cy5 0.97 4.54 0.19 0.63

Support Vector Regression
FAM 0.99 0.50 0.03 0.01
ATTO550 0.95 1.18 0.01 0.38
Cy5 0.98 1.00 0.07 0.25

Multilayer Perceptron (NN) Regression
FAM 0.99 1.99 0.03 0.10
ATTO550 0.99 0.66 0.02 0.09
Cy5 0.99 0.67 0.02 0.06

Figure 4. Scalable multiplexed fluorophore detection using a Neural Network model without hardware reconfiguration. (a) The evaluation of NN for
predicting concentrations in two-fluorophore mixtures consisting of ATTO425 and FAM (top) with four concentration levels (0.00, 0.25, 0.50, and
1.00 μM), resulting in 16 combinations. Samples were probed seven times, with the resulting data set split into 80% for training and 20% for testing.
The predictions (middle) have R2 values of 0.99 for ATTO425 and 0.81 for FAM, and corresponding concentration-specific MAEs displayed
(bottom). (b) The concentration predictions for 64 three-fluorophore mixtures of ATTO425, FAM, and ATTO550 (top) demonstrate improved
predictive linearity (middle) with R2 values of 0.99 for all fluorophores, and corresponding MAEs (bottom). (c) The concentration predictions for 256
four-fluorophore mixtures of ATTO425, FAM, ATTO550, and Cy5 (top) display predictive linearity (middle) while maintaining R2 values of 0.99 for
all fluorophores, and corresponding MAEs (bottom), consistent with the three-fluorophore model. The lower performance of the two-fluorophore
model is due to its smaller data set. Comparable predictive reliability for each fluorophore across models confirms the capability to handle mixtures
with different numbers of fluorophores.
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fluorophores without requiring reconfiguration of the optical
components.
Example Application for Real-Time RT-LAMP Detec-

tion.Having demonstrated the capability of our optical setup, in
conjunction with NN modeling, to predict static fluorophore
concentrations within a mixture accurately, we applied this
system to track the progression of a real-world biochemical
diagnostic assay as a test-bed. The technique in focus, Loop-
mediated Isothermal Amplification (LAMP), was initially
introduced by Notomi et al.46 to amplify DNA molecules
exponentially under isothermal conditions. We made use of a
Reverse Transcription LAMP (RT-LAMP) assay for the
simultaneous detection of the presence of three RNA targets:
Respiratory Syncytial Virus (RSV), Influenza A (IAV), and
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2). Here, multiplexed detection was enabled by the
Detection of Amplification by Release of Quenching (DARQ)
technique,47 which involves the unquenching of fluorescently
labeled probes upon the extension of the backward strand to
produce an increasing amount of specific fluorescence as the
amplification proceeds. In addition to enabling multiplexed
detection, DARQ LAMP also enables higher specificity, which
helps in alleviating false positives in traditional intercalating dye-
based LAMP that is often considered a characteristic drawback.

The concentration of each RNA target was 1500 copies per
reaction (cp/rxn), and five distinct combinations were
introduced into the multiplexed reaction, viz., the no template
control (NTC), the three individual targets (RSV, IAV, and
SARS-CoV-2), and a mixture of all three targets. These targets
were added to triplicate reactions that were subsequently
incubated at 61 °C for 70 min and then swiftly cooled to room
temperature to stop the amplification. The raw fluorescence data

acquired by the optical assembly at 30-s intervals was supplied to
the NN model described earlier to predict the time-varying
concentration for each constituent fluorophore in an offline
manner. Figures 5a, 5b and 5c show the concentrations of FAM,
ATTO550, and Cy5 as a function of time, which mark the
amplification and detection of RSV, IAV, and SARS-CoV-2,
respectively. A threshold concentration TC was computed based
on the NTC reactions such that TC = μ + 3σ, where μ and σ
represent the mean and standard deviation of concentrations
over the entire reaction time, and a positive call was made when
the predicted concentration surpasses the set threshold. All plots
show accurate prediction of amplification in conditions where
the RNA target was present individually or with other targets,
thus validating the proposed optical assembly and accompany-
ing NN model for monitoring the change in a multiplexed
nucleic acid amplification and detection assay. The use of
fluorophores in LAMP assays provides a visual or measurable
indicator of the amplification process with high specificity. The
relationship between the increase in fluorescence intensity and
the amount of target RNA amplified is linear up to a phase before
saturation occurs due to the unavailability of additional
fluorophore attached primer. Consequently, quantifying the
initial target sample is feasible by measuring the time to positive
and establishing a standard curve, where a shorter time to
positive typically indicates a higher initial target concentration.
While this study highlights the foundational detection
mechanisms and ML integration for multiplexed target
detection, we note that extensive further testing will be required
to fully evaluate the sensitivity, specificity, and quantitative
capabilities of the assay for each target before deploying it in real-
world human infection scenarios. Characterization of these
aspects is underway, and findings will be presented in

Figure 5. Demonstrating the use of the machine learning-enhanced fluorescence detection setup for a biochemical assay. (a) The real-time
amplification curves for FAM fluorophore, indicating the presence of RSV RNA in a triplex reverse-transcription loop-mediated isothermal assay (RT-
LAMP) for five different samples (in triplicates): no template control (NTC), RSV RNA only, IAV RNA only, SARS-CoV-2 RNA only, and a
combination of all three RNAs. The curves represent offline-predicted fluorophore concentrations using the 24 feature values acquired at 30-s intervals,
with the horizontal dotted line denoting a threshold concentration TC, calculated as the mean (μ) plus three standard deviations (3σ) of the NTC
reactions. (b) and (c) present the real-time amplification curves for ATTO550 (b) and Cy5 (c) fluorophores, tracing IAV and SARS-CoV-2 RNA
detection in the same triplex reactions. The appropriate amplification of each RNA across the samples validates the optical setup’s suitability for
practical assay deployment.
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subsequent publications based on the detection systems
introduced here.

■ CONCLUSION
Our study introduces a transformative approach to fluorescence
measurement for point-of-care applications involving bulk
assays via a lens-free optical assembly complemented by a
machine learning model. The effective deployment of a Neural
Network to analyze data from mixtures excited by a
triwavelength source and the emissions detected by eight
channels of a spectral sensor significantly enhances detection
and quantification limits beyond traditional single-channel
approaches. The scalability of our model highlights its capability
to advance point-of-care diagnostics, offering a versatile, highly
multiplexable solution without the need for intricate reconfigu-
rations for diverse fluorophores or targets. Validating its utility in
concurrently detecting viral RNA from pathogens like RSV,
Influenza A, and SARS-CoV-2 underscores its potential in
addressing urgent needs for multiplexed biomarker detection
across critical health areas. Future efforts will concentrate on
refining the ML model for a more straightforward incorporation
of new fluorophores using only their specific calibration data
without requiring the preparation and testing of exponential
unique fluorophore combinations, thereby simplifying the
process.

■ MATERIALS AND METHODS
Design and Fabrication.The aluminum heating block and adapter

for mounting the RGB LED and spectral sensor were designed using
Solidworks CAD software, while the printed circuit boards (PCBs) for
the LED and sensor were designed with AutoDesk Eagle CAD. All
components of the optical setup were virtually assembled in Solidworks
to verify alignment prior to fabrication. The heating block was
machined by Protolabs Network, and the adapter was 3D printed in-
house using a MakerBot MethodX printer (Brooklyn, NY) with ABS
material. The PCBs were fabricated by OSH Park LLC (Lake Oswego,
OR). The RGB LED (SK6812) was sourced from Adafruit Industries
(New York, NY), and other components such as the spectral sensor
(AS7341), a two-ohm power resistor (MP725−2.00) for heating, a 10k-
ohm thermistor (MC65F103A) for temperature feedback, and a
Raspberry Pi Zero microprocessor were purchased from DigiKey.com.
A detailed description and function of each component, along with a
cost estimate, are provided in Supplementary Table S2.
Data Set and Codes for ML Model Training and Concen-

tration Prediction in Python. The training data sets referenced in
sections concerning the analysis and comparison of ML-based methods
and the scalability enabled by ML, along with the corresponding Python
codes to generate, train, and test the ML models that were subsequently
evaluated for predicting static fluorophore combinations are available in
a GitHub repository. While developing the ML models, we made use of
the SciPy open-source package for developing Multiple Linear
Regression and Scikit-learn package for Support Vector Regression
and Neural Network models and developed custom codes to train the
specific models, pre- and postprocess the data and generate prediction
results and associated figures. These resources can be accessed at
https://github.com/alk5897/ML-aided-optics-for-POC-multiplexed-
fluorescence.
Calculation of LoB, LoD, and LoQ Values. The limit of blank

(LoB) was determined using the formula: μblank + 1.64*(σblank), where
μblank and σblank are the mean and standard deviation of the predictions
at 0 μM, respectively. The limit of detection (LoD) was then defined as
LoB + 1.62 × (σ0.25), where σ0.25 is the standard deviation of predictions
at a low concentration of 0.25 μM. The limit of quantification (LoQ)
was calculated as 3.3 × LoD.48 For the traditional analytical approach
using a single optimal detection channel, we first calculated the LoB,
LoD, and LoQ values in terms of relative fluorescence units (RFU). We
then applied the linear fit equations from Figure 2c: RFUFAM = (0.36) ×

CFAM + 0.34, RFUATTO550 = (0.52) × CATTO550 + 0.26, and RFUCy5 =
(0.73) × CCy5 + 0.04, where CFAM, CATTO550, and CCy5 are the
concentrations of FAM, ATTO550, and Cy5, respectively, to convert
these values to concentrations.
RT-LAMP Reaction Mix. The RT-LAMP reaction mix consists of

1x isothermal buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 50 mM
KCl, 2 mM MgSO4, 0.1% Tween 20, pH 8.8), 3 sets of 6 primers each,
0.5 M Betain, 6 mM MgSO4, 1.4 mM deoxyribonucleotide
triphosphates (dNTPs), 0.5 U/μL Bst 2.0 DNA polymerase, 0.3 U/
μL WarmStart reverse transcriptase, 1.5 μL purified RNA template (per
target) and PCR-grade water to bring total reaction volume to 25 μL.
Isothermal buffer, DNA polymerase, reverse transcriptase, dNTPs, and
PCR-grade water were purchased from New England Biolabs (MA,
USA). Heat-inactivated SARS-CoV-2 (VR-1986HK) RNA and
quantitative genomic RNAs of Influenza A virus (H1N1) strain A/
PR/8/34 (VR-95DQ) and human Respiratory Syncytial Virus strain A2
(VR-1540DQ) were purchased from American Type Culture
Collection (ATCC). Primer sequences initially described in49−51 and
modified according to DARQ rules are detailed in Supplementary Table
S3 and were synthesized by Integrated DNA Technologies (Coralville,
USA). The three fluorophore-attached oligonucleotide sequences, Fds,
were used to acquire the ML algorithms’ static calibration data.
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